谷歌开放一种新的图像分类卷积神经网络模型

今天,谷歌再次宣布开放 Inception-ResNet-v2,一个在 ILSVRC 图像分类基准上取得顶尖准确率的卷积神经网络。文中提到的论文可点击「阅读原文」进行下载。

为了在该领域取得更多进展,今天我们非常高兴的宣布开放 Inception-ResNet-v2,这是一个在 ILSVRC 图像分类基准上取得顶尖准确率的卷积神经网络。Inception-ResNet-v2 是早期发布的 Inception V3 模型的变体,该模型借鉴了微软 ResNet 论文中的思路。具体内容可在我们的论文:Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 中看到。

残差连接(Residual connections )允许模型中进行 shortcut,也使得研究员能成功的训练更深的神经网络从而产生更好的性能。这也使得 Inception 块的极度简单化成为可能。下图对比了这两个模型架构:

Inception V3 图解

Inception-ResNet-v2 的图解

在第二张图解的顶端,你可以看到全部的网络拓展,可以注意到该网络比之前的 Inception V3 要深得多。主图的下面是更简单阅读同一网络版本的方式,里面重复的残差块是被压缩了。注意,里面的 Inception 块被简化的,比先前的 Inception V3 包含更少的并行塔 (parallel towers)。

Inception-ResNet-v2 架构比之前的前沿模型更加准确。下表报告了在基于单类图像的 ILSVRC 2012 图像分类基准上的 Top-1 和 Top-5 的准确度检验结果。此外,该新模型相比于 Inception V3 大约只需要两倍的存储和计算能力。

结果援引于 ResNet 论文

举个例子,Inception V3 和 Inception-ResNet-v2 模型在识别犬种上都很擅长,但新模型做的更好。例如,旧模型错误报告右图中的狗是阿拉斯加雪橇犬,而新的 Inception-ResNet-v2 模型准确识别了两张图片中的狗的种类。

阿拉斯加雪橇犬(左),西伯利亚爱斯基摩狗(右)

为了让人们能立即进行试验,我们也发布了 Inception-ResNet-v2 模型的一个预训练案例作为 TF-Slim 图像模型库的一部分。

如果想进行试验,这是如何训练、评估或微调网络的指导:https://github.com/tensorflow/models/blob/master/slim/README.md

本文选自:Google Research,作者:Alex Alemi,机器之心编译;

©机器之心,最专业的前沿科技媒体和产业服务平台,每日提供优质产业资讯与深度思考,欢迎关注微信公众号「机器之心」(almosthuman2014),或登录机器之心网站www.jiqizhixin.com  , 查看更多精彩内容。